Category Archives: Startup

Origins of the Pollution Guardian Startup

We have now completed the first quarter of the Pollution Guardian project part funded by Innovate UK and it seemed a good time to reflect on where this whole thing came from in the first place.

It all started from a growing awareness, through many stories in the press, about the negative health effects of air pollution. Furthermore this pollution, unlike the ‘pea-souper’ of the 1950s and 1960s was largely invisible. However its immediate term effects were not invisible to the large numbers of people suffering from various respiratory illnesses such as asthma. It seemed there should be a demand to ‘shine a light’ on this pollution.

When starting a business idea it is important not only to understand customer needs but also the business’s capability to do something about it. At All about the Product we are veterans from the mobile phone industry and are steeped in both technical and commercial experience to bring highly sophisticated consumer electronic communications products to market. Any solution we were going to build would therefore be an ‘Internet of Things’ solution.

As many people have told us, for a good product idea it is not only important to know whether there are high levels of pollution present but also there needs to be something to do about it. We therefore became interested in the effects of pollution inside vehicles where there was an opportunity to control this enclosed space more than the entire atmosphere of a city. On further investigation we found articles which showed that very often the level of pollutants inside a car exceed those at the road-side [1] – we had our application focus.

We wanted a product within economic reach of the majority of the population and therefore a low cost consumer internet of things product for use in cars and other vehicles was born.

As this idea developed, we spoke to many stakeholder organisations such as health charities, workers unions, academia and local government. What we learnt from these discussions underlined the fact that there was this invisible problem there and many felt powerless to combat it. Our motivation to do something only grew.

We put our engineering hats and did a quick study to show that producing such a product was feasible. However when we looked at the skills needed to pull this product off, we quickly realised we lacked knowledge about urban pollution and the experience of pollution measurement. Fortuitously our local University – the University of Surrey has a very strong department in this field, so we contacted Professor Kumar at the Global Centre for Clean Air Research (GCARE) and set up a meeting. It quickly emerged that our skills complemented those of the university in making this product investigation happen. We agreed to join forces in making a bid for one of Innovate UK’s competitions and after a couple of attempts we won one! Thus the Pollution Guardian Project was born.

[1] Cepeda et al :Lancet Public Health 2017; 2:e23-34

Sensing the Air Quality

Venue for sensing the air quality and emissions program

In our home page, we mentioned that within product incubation, we were working on our own solution activities. The area of interest is within the internet of things (IoT) and is  targeted at low cost air pollution/air quality (AQ) solutions at this time. Thus we were pleased to participate in the 46th Intelligent sensing program, organised by the UK knowledge transfer network.

What were the main learnings from the event?

  • Big concerns on the level of small particulates, specifically PM2.5 and below.
  • EU AQ measurement standardisation is scoping “informative” sensing solutions.
  • Growing interest in AQ sensor networks.
  • UK government desire to leverage crowdsourced pollution data.
  • Key sensor criteria & findings from low cost sensing components.
  • Urban & journey pollution mapping.


Can we meet the EU reduction targets for PM2.5 particulates by 2020? Should we be counting the number of particles rather than particle mass/m^3? Just one PM10 particle weighs as much as 1000 PM1 particles.

AQ sensor networks

Presentations from Alphasense and AirMonitors Ltd. pointed to the additional value coming from “lower than reference” quality sensors connected up as a network e.g. the ability to dis-aggregate pollution sources.

Crowdsourcing, sensor criteria and findings

The UK Environment Agency are looking to identify how they can better leverage crowdsource AQ data as a larger monitoring network than their existing 150 reference stations across the UK. However, the main concern is over the quality of this data. This then leads us to think about the air quality sensor and sensor system criteria:

  • Sensitivity: enough for the purpose e.g. movements within the general background outdoor AQ level
  • Specificity: responding to a specific gas pollutant and not being easily spoofed by the presence of other gases
  • Stability: the sensor performance remains predictable enough, compared to a reference over its intended lifespan

A couple of presentations mentioned using  low cost sensors based upon existing metal oxide technology – the learning here being that the sensor system stability is a challenging issue to manage. Mitigation seems so far to have been to adopt electrochemical type sensors but which can be significantly higher cost.

Hamamatsu was one supplier at the event claiming good individual gas detection capability using light absorption sensing e.g. a sensor set to the band gap of a specific gas. This looks an interesting avenue to explore further.

Overall, the sensor selection is one of the most significant factors for us to consider in our low cost AQ sensing solution.

Urban & air pollution monitoring from vehicles

A couple of interesting talks measuring pollution across journeys.

  • Motorway driving is quite bad for particulates exposure due to vehicle pollution “plumes”.
  • Air re-recirculation in cars provides quite some benefit to exposure levels, as long as the CO2 levels & humidity levels in the cabin don’t build up too much.
  • Urban NO2 hotspots experienced by cyclists on pathways, not only near road junctions but also when passing by industrial areas.
  • AQ pollution hotspots can move position dependent on the wind direction e.g. crossing over to the opposite side of the road. So, dynamic measurements or models are important.